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Nanophotonics for Thermal Control

» Absorption/Emission Engineering
 LDOS engineering and Near field heat transfer
« Thermophotovoltaics and Radiative cooling
* Thermoplasmonics and Thermonanophotonics
* Thermo-plasmonics for thermocatalysis
» Thermo-plasmonics for solar evaporation/desalination



Nanophotonic Engineering — Surface Polaritons and Resonators

Surface Polaritons (SPs) Resonators (Nanoantennas)
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Quasiparticle originates from the strong- An incident electromagnetic wave induces
coupling of a photon with electrons (metal) or resonant responses in finite nanostructures.
optical phonons (dielectric). The associated Metallic and dielectric resonators exhibit different
propagating wave is confined to an interface. types of modes that are called, respectively:

» Surface plasmon polariton (SPPs) > Localized surface plasmons (LSP)

> Surface phonon polariton (SPhPs) > Mie resonances

)  Modified dispersion relation (high DOS) B Resonance condition (high DOS)
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Nanophotonic Engineering — Surface Polaritons and Resonators
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The Photon Density of States and the Blackbody Emission cPEL
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http://dx.doi.org/10.1016/j.mattod.2013.09.003

We known that photons are quanta of electromagnetic field oscillations and that they are bosons. For an
electromagnetic wave propagating in an homogeneous bulk medium (i.e. air, glass, water) we have obtained

(L10,slide11) a linear dispersion relation:
_ %o Where ¢, = speed of light in vacuum
W =— . .
n and n = real part of the refractive index

By analogy with the phonons in the Debye approximation, (L7, slide33) it is possible to obtain the density of states

(DOS) for photons:

w?> n3w?

D(w) = = Where ¢ = group velocity = <2 that for a propagating
w2c3  m2cd di
0 wave in a n homogeneous medium corresponds to ¢y /n

This quantity is indeed critical for determining the black-body emission spectrum. Indeed, we define the spectral
emissivity as:

dw cU, |dw h W’
a=mh=mo o =" 4 [ax where: Uy = hof @,T) D(w) = ————
exp (7)1

® By modifying the photon density of states we can alter the spectral emissivity of a surface/object

) To modify the photon density of states we need to modify the dispersion relation w(k)

m) SPP and SPhP allow us to engineer the density of states, i.e. radiation absorption/emission



Enhancement of Near Field Radiative Heat Transfer EPFL
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* For very small gaps SPPs or SPhPs modes can significantly enhance radiative energy transfer, exceeding the
blackbody limit
« SPhPs are often more suitable because they can better match the peak blackbody emission frequency (typically

in the infrared) and thus enhance the spectral region with the highest photon content

https://pubs.acs.org/doi/full/10.1021/acsphotonics.0c00404 6



Enhancement of Near Field Radiative Heat Transfer EPFL
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https://www.nature.com/articles/nnano.2015.6 https://pubs.acs.org/doi/full/10.1021/acsphotonics.DcO



Nanophotonics for Thermal Control EPFL

» Absorption/Emission Engineering
 LDOS engineering and Near field heat transfer
« Thermophotovoltaics and Radiative cooling
* Thermoplasmonics and Thermonanophotonics
* Thermo-plasmonics for thermocatalysis
» Thermo-plasmonics for solar evaporation/desalination



Absorption/Emission Engineering

Emission of Thermal Radiation Interaction of Radiation with Matter
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* From Kirckhoffs law we know that €, 9 = a; ¢.

« We can use nanostructures to control the spectral and angular absorption of surfaces

» We can engineer the emissivity of surfaces.
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Absorption/Emission Engineering EPFL

Planar Au Nanostructured Au

Tagliabue et al. Nanoscale 5 (2013);

* From Kirckhoffs law we know that €, 9 = a; ¢.
« We can use nanostructures to control the spectral and angular absorption of surfaces

» We can engineer the emissivity of surfaces.
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Absorption/Emission Engineering EPFL
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Tagliabue et al. Sci. Rep. (2014);

* From Kirckhoffs law we know that €, 9 = a; ¢.
« We can use nanostructures to control the spectral and angular absorption of surfaces

» We can engineer the emissivity of surfaces
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Absorption/Emission Engineering - Thermophotovoltaics
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» Back emission of IR at energies matching the solar-cell bandgap (minimize thermalization losses)

https://www.nature.com/articles/s41563-020-0740-6
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Absorption/Emission Engineering — Radiative Cooling EPFL
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» Perfect reflection of sunlight in order to avoid any thermal input

» Strong emission of infrared light at wavelength corresponding to the transparency window of the

atmosphere, corresponding to effective loss of energy

https://www.nature.com/articles/nature13883 13



Absorption/Emission Engineering — Radiative Cooling EPFL
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» Perfect reflection of sunlight in order to avoid any thermal input
« Strong emission of infrared light at wavelength corresponding to the transparency window of the
atmosphere, corresponding to effective loss of energy

https://www.nature.com/articles/nature13883 14



Absorption/Emission Engineering — Radiative Cooling EPFL
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« A similar concept can be used also to realize cooling clothes and fabric as well as coatings than can

“cloak” hot object from the view of infrared cameras

https://pubs.acs.org/doi/full/10.1021/acs.nanolett.1c00741 15



Nanophotonics for Thermal Control EPFL

* Absorption/Emission Engineering

 LDOS engineering and Near field heat transfer

« Thermophotovoltaics and Radiative cooling
 Thermoplasmonics and Thermonanophotonics

* Thermo-plasmonics for thermocatalysis

* Thermo-plasmonics for solar evaporation/desalination
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Thermoplasmonics
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Thermoplasmonics for Solar Evaporation/Desalination

Figure 1: The Al-based plasmonic absorber synthesized by Zhou et al. absorbs most

of the solar spectrum.
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Solar-driven Interfacial Evaporation

Solar energy
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https://www.nature.com/articles/s41560-018-0260-7
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Solar-driven Interfacial Evaporation

A

exhaling vapor

Fumping water

Material and structural engineering
Lightin—— _ strategies:

b Overall design principles:
Vapor out - X

Light + High broadband light absorption
absorber

< Efficient light-to-heat conversion

< Good thermal insulation
Substrate

<+ Efficient water transport

Solar evaporation device

https://www.sciencedirect.com/science/article/pii/S2542435118306299

¢ < Light absorption and light-to-

heat conversion engineering

+r Heat localization and thermal
concentration

< Water pathway design

“ Interface engineering

% Biomimetic structural design
<+ 3D evaporator design

< Salt-rejection structural design

L % Theoretical modeling
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Solar-driven Interfacial Evaporation

Vapor
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« Combine water purification with electricity production

https://www.sciencedirect.com/science/article/pii/S2542435118306299
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